Altın oran Nedir, Nerelerde Kullanılır

Altın oran Nedir Nerelerde Kullanılır

Altın oran, doğada sayısız canlının ve cansızın şeklinde ve yapısında bulunan özel bir orandır. Doğada bir bütünün parçaları arasında gözlemlenen, yüzyıllarca sanat ve mimaride uygulanmış, uyum açısından en yetkin boyutları verdiği sanılan geometrik ve sayısal bir oran bağıntısıdır. Doğada en belirgin örneklerine insan vücudunda, deniz kabuklulularında ve ağaç dallarında rastlanır. Platon'a göre kozmik fiziğin anahtarı bu orandır. Altın oranı bir dikdörtgenin boyunun enine olan "en estetik" oranı olarak tanımlayanlar da vardır.
Eski Mısırlılar ve Yunanlılar tarafından keşfedilmiş, mimaride ve sanatta kullanılmıştır. Göze çok hoş gelen bir orandır.



Altın Oran; CB / AC = AB / CB = 1,618

Altın Oran; CB / AC = AB / CB = 1.618; bu oranın değeri her ölçü için 1.618 dir.
Bir doğru parçasının (AB) Altın Oran'a uygun biçimde iki parçaya bölünmesi gerektiğinde, bu doğru öyle bir noktadan (C) bölünmelidir ki; küçük parçanın (AC) büyük parçaya (CB) oranı, büyük parçanın (CB) bütün doğruya (AB)oranına eşit olsun.
Altın Oran, pi (π) gibi irrasyonel bir sayıdır ve ondalık sistemde yazılışı; 1.618033988749894... dür. (noktadan sonraki ilk 15 basamak). Bu oranın kısaca gösterimi:

  olur. Altın Oranın ifade edilmesi için kullanılan sembol, PHI yani Φ'dir. 

Tarihçe 

Altın Oran, matematikte ve fiziksel evrende ezelden beri var olmasına rağmen, insanlar tarafından ne zaman keşfedildiğine ve kullanılmaya başlandığına dair kesin bir bilgi mevcut değildir. Tarih boyunca birçok defa yeniden keşfedilmiş olma olasılığı kuvvetlidir.
Leonardo da Vinci'nin günlüklerinin birinde bulunan, insan ve doğayı birbiriyle ilgilendirme-bütünleştirme çalışması için bir dönüm noktası kabul edilen ve insan vücudundaki oranları gösteren Vitruvius Adamı çalışması (1492).

Euclid (M.Ö. 365 M.Ö. 300), "Elementler" adlı tezinde, bir doğruyu 0.6180399... noktasından bölmekten bahsetmiş ve bunu, bir doğruyu ekstrem ve önemli oranda bölmek diye adlandırmıştır. Mısırlılar keops Piramidi'nin tasarımında hem pi hem de phi oranını kullanmışlardır. Yunanlılar, Parthenon'un tüm tasarımını Altın Oran'a dayandırmışlardır. Bu oran, ünlü Yunanlı heykeltraş Phidias tarafından da kullanılmıştır. Leonardo Fibonacci adındaki İtalyan matematikçi, adıyla anılan nümerik serinin olağanüstü özelliklerini keşfetmiştir fakat bunun Altın Oran ile ilişkisini kavrayıp kavramadığı bilinmemektedir. Leonardo da Vinci, 1509'da Luca Pacioli'nin yayımladığı İlahi Oran adlı bir çalışmasına resimler vermiştir. Bu kitapta Leonardo Leonardo da Vinci tarafından yapılmış Five Platonic Solids (Beş Platonik Cisim) adlı resimler bulunmaktadır. Bunlar, bir küp, bir Tetrahedron, bir Dodekahedron, bir Oktahedron ve bir Ikosahedronun resimleridir. Altın Oran'ın Latince karşılığını ilk kullanan muhtemelen Leonardo da Vinci 'dir. Rönesans sanatçıları Altın Oran'ı tablolarında ve heykellerinde denge ve güzelliği elde etmek amacıyla sıklıkla kullanmışlardır. Örneğin Leonardo da Vinci, Son Yemek adlı tablosunda, İsa'nın ve havarilerin oturduğu masanın boyutlarından, arkadaki duvar ve pencerelere kadar Altın Oran'ı uygulamıştır. Güneş etrafındaki gezegenlerin yörüngelerinin eliptik yapısını keşfeden Johannes Kepler (1571-1630), Altın Oran'ı şu şekilde belirtmiştir: "Geometrinin iki büyük hazinesi vardır; biri Pythagoras'ın teoremi, diğeri, bir doğrunun Altın Oran'a göre bölünmesidir." Bu oranı göstermek için, Parthenon'un mimarı ve bu oranı resmen kullandığı bilinen ilk kişi olan Phidias'a ithafen, 1900'lerde Yunan alfabesindeki Phi harfini Amerika'lı matematikçi Mark Barr kullanmıştır. Aynı zamanda Yunan alfabesindekine karşılık gelen F harfi de, Fibonacci'nin ilk harfidir. 

Altın Oran, bir sayının insanlık, bilim ve sanat tarihinde oynadığı inanılmaz bir roldür. Phi, evren ve yaşamı anlama konusunda bizlere yeni kapılar açmaya devam etmektedir. 1970'lerde Roger Penrose, o güne kadar imkânsız olduğu düşünülen, "yüzeylerin beşli simetri ile katlanması"nı Altın Oran sayesinde bulmuştur.

Fibonacci Sayıları ve Altın Oran

Fibonacci sayıları (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765... şeklinde devam eder) ile Altın Oran arasında ilginç bir ilişki vardır. Dizideki ardışık iki sayının oranı, sayılar büyüdükçe Altın Oran'a yaklaşır.
Fibonacci ardışıkları, Altın Oran ilişkisi yorumlamasıdır.Bundada oran ne olursa olsun her oranın degeri 1.618 dir ,degişmez

Altın Oran Nerelerde Kullanılır - Altın Oran

1) Ayçiçeği: Ayçiçeği'nin merkezinden dışarıya doğru sağdan sola ve soldan sağa doğru tane sayılarının birbrine oranı altın oranı verir.

2) Papatya Çiçeği: Papatya Çiçeğinde de ayçiçeğinde olduğu gibi bir altın oran mevcuttur.

3) İnsan Kafası: Bildiğiniz gibi her insanın kafasında bir ya da birden fazla saçların çıktığı düğüm noktası denilen bir nokta vardır. İşte bu noktadan çıkan saçlar doğrusal yani dik değil, bir spiral, bir eğri yaparak çıkmaktadır. İşte bu spiralin ya da eğrinin tanjantı yani eğrilik açısı bize altın oranı verecektir.

4) İnsan Vücudu: İnsan Vücudunda Altın Oran'ın nerelerde görüldüğüne bakalım:

a) Kollar: İnsan vücudunun bir parçası olan kolları dirsek iki bölüme ayırır(Büyük(üst) bölüm ve küçük(alt) bölüm olarak). Kolumuzun üst bölü- münün alt bölüme oranı altın oranı verceği gibi, kolumuzun tamamının üst bölüme oranı yine altın oranı verir.

b) Parmaklar: Ellerimizdeki parmaklarla altın oranın ne alakası var diyebilirsiniz. İşte size alaka... Parmaklarınızın üst boğumunun alt boğuma oranı altın oranı vereceği gibi, parmağınızın tamamının üst boğuma oranı yine altın oranı verir.

5) Tavşan: İnsan kafasında olduğu gibi tavşanda da aynı özellik vardır.

6) Mısır Piramitleri: İşte size Altın Oran'ın en eski örneklerinden biri... Şimdi ne alaka Altın Oran ve Milattan Önce yapılan Mısır Piramitleri Alaka şu; Her bir piramitin tabanının yüksekliğine oranı evet yine altın oranı veriyor.

7) Leonardo Da Vinci: Bilindiği gibi Leonardo da Vinci Rönesans devri ünlü ressamlarındandır. Şimdi bu ünlü ressamın çizmiş oolduğu tabloları inceleyelim.

a) Mona Lisa: Bu tablonun boyunun enine oranı altın oranı verir.

b) Aziz Jerome: Yine tablonun boyunun enine oranı bize altın oranı verir.

8) Picasso: Picasso da Leonardo da Vinci gibi ünlü bir ressamdır. Ve resimlerinde bu oranı kullanmıştır.

9) Çam Kozalağı: Çam kozalağındaki taneler kozalağın altındaki sabit bir noktadan kozalağın tepesindeki başka bir sabit noktaya doğru spiraller (eğriler) oluşturarak çıkarlar. İşte bu eğrinin eğrilik açısı altın orandır.

10) Deniz Kabuğu: Denize çoğumuz gitmişizdir. Deniz kabuklarına dikkat edenimiz, belki de kolleksiyon yapanımız vardır. İşte deniz kabuğunun yapısı incelendiğinde bir eğrilik tespit edilmiş ve bu eğriliğin tanjantının altın oran olduğu görülmüştür.

11) Tütün Bitkisi: Tütün Bitkisinin yapraklarının dizilişinde bir eğrilik söz konusudur. Bu eğriliğin tanjantı altın orandır.

12) Eğrelti Otu: Tütün Bitkisindeki aynı özellik Eğrelti Otu'nda da vardır.

13) Elektrik Devresi: Ya demek ki Altın Oran sadece Matematik ve kainatta değil, Fizik'te de kullanılıyormuş. Nasıl mı Şöyle... Verilen n tane dirençten maximum verim elde etmek için bir paralel bağlama yapılması gerekir. Bu durumda Eşdeğer Direnç, yani Reş= yani altın oran olur.

14) Salyangoz: Salyangozun Kabuğu bir düzleme aktarılırsa, bu düzlem bir dikdörtgen oluşturur (-ki biz bu dikdörtgene altın dikdörtgen diyoruz.-) İşte bu dikdörtgenin boyunun enine oranı yine altın oranı verir.

15) Otomotiv Sanayi: İlk önce ben size bir soru yönelteyim. Estetik bakımından bir Murat 131 mi daha çok ilginizi çeker yoksa bir Mazda ya da Toyota mı Tabi ki Mazda ya da Toyota demişsinizdir. Peki bunun nedenini hiç düşündünüz mü Ben size söyleyeyim. Şimdi Murat 131'e bakıyorsunuz, baktıkça içiniz kararıyor, yine bakıyorsunuz yine kararıyor. En sonunda ya kardeşim bu ne biçim araba diyorsunuz. Ama gidip bir Mazda ya da Toyota'ya bakıyorsunuz. Baktıkça içiniz rahatlıyor, yine bakıyorsunuz ferahlıyorsunuz. Çünkü o kadar güzel bir estetik var ki. İşte bu estetiği eğim sağlıyor. Mesela Murat 131'in önü, arkası, kapısı her yeri düz (Mübarek kibrit kutusu) Ama Mazda ya da Toyota'nın kapısında özellikle ön ve arka tamponunda bir eğim var. İşte bu eğimin eğrilik açısı araştırılmış ve bunun altın oran olduğu görülmüştür. Bundan dolayı Çin, Amerika, Japon Otomotiv Sanayi Dünya'da ilk üçü oluştururken; Türkiye maalesef ve maalesef 30-40-50. sıralarda yer almakta. İnşallah bir gün bunu biz de akıl ederiz...

16) Mimar Sinan: Mimar Sinan'ın da bir çok eserinde bu altın oran görülmektedir. Mesela Süleymaniye ve Selimiye Camileri'nin minarelerinde bu oran görülmektedir

Adınız :
Mailiniz :
Yorumunuz :
Doğrulama Kodu :